
Object Oriented Databases and Object Persistence

www.pdbmbook.com

http://www.pdbmbook.com/

Introduction

• Recap: Basic Concepts of OO

• Advanced Concepts of OO

• Basic Principles of Object Persistence

• OODBMS

• Evaluating OODBMSs

2

Recap: Basic Concepts of OO

• Object is an instance of a class

• Class contains a blueprint description of all the
object’s characteristics

• Object bundles both variables (which determine
its state) and methods (which determine its
behavior) in a coherent way

3

Recap: Basic Concepts of OO

public class Employee {

private int EmployeeID;

private String Name;

private String Gender;

private Department Dep;

public int getEmployeeID() {

return EmployeeID;

}

public void setEmployeeID(
int id) {

this.EmployeeID = id;

}

public String getName() {

return Name;}
4

public void setName(String
name) {

this.Name = name;

}

public String getGender() {

return Gender;

}

public void setGender(String
gender) {

this.Gender = gender;

}

public Department getDep() {

return Dep;

}

public void setDep(Department
dep) {this.Dep = dep;}}

Recap: Basic Concepts of OO

• Getter and setter methods implement the concept
of information hiding (aka encapsulation)

• Encapsulation enforces a strict separation
between interface and implementation.

– interface consists of the signatures of the methods.

– implementation is based upon the object’s variables
and method definitions

5

Recap: Basic Concepts of OO

public class EmployeeProgram {

public static void main(String[] args) {

Employee Bart = new Employee();

Employee Seppe = new Employee();

Employee Wilfried = new Employee();

Bart.setName("Bart Baesens");

Seppe.setName("Seppe vanden Broucke");

Wilfried.setName("Wilfried Lemahieu");

}

}
6

Advanced Concepts of OO

• Method overloading

• Inheritance

• Method overriding

• Polymorphism

• Dynamic binding

7

Advanced Concepts of OO

• Method overloading refers to using the same
name for more than one method in the same
class.

• OO language environment can then determine
which method you are calling, provided the
number or type of parameters is different in each
method

8

Advanced Concepts of OO

public class Book {

String title;

String author;

boolean isRead;

int numberOfReadings;

public void read(){

isRead = true;

numberOfReadings++;

}

9

public void read(int i){

isRead = true;

numberOfReadings +=
i;

}

}

read(1) same effect as read()

Advanced Concepts of OO

• Method overloading is a handy feature when defining
constructors for a class

• A constructor is a method which returns an object of
a class

• Examples:

– Student(String name, int year, int month,
int day)

– Student(String name)

10

Advanced Concepts of OO

• Inheritance represents an “is a” relationship

– E.g. Student and Employee inherit from Person

– Superclass versus Subclass

11

Advanced Concepts of OO

public class Person {

private String name;

public Person(String name){

this.setName(name);

}

public String getName(){

return this.name;

}

public void setName(String name){

this.name = name;

}

}

12

public class Employee extends Person {

private Employee manager;

private int id;

public Employee(String name, Employee manager,
int empID) {

super(name);

this.setManager(manager);

this.setEmployeeID(empID);

}

public Employee getManager() {

return manager;

}

public void setManager(Employee manager) {

this.manager = manager;

}

public int getEmployeeID() {

return id;

}

private void setEmployeeID(int employeeID) {

this.id = employeeID;}}

Advanced Concepts of OO

• Method overriding: subclasses can override an
inherited method with a new, specialized
implementation

13

Advanced Concepts of OO

public double calculateGPA() {

double sum = 0;

int count = 0;

for (double grade : this.getGrades()){

sum += grade;

count++;

}

return sum/count;

}

14

public double calculateGPA(){

double sum = 0;

int count = 0;

for (double grade : this.getGrades()){

if (grade > 80){

sum += grade;

count++;

}

}

return sum/count;

}

Student Class Graduate Class

Advanced Concepts of OO

• Polymorphism refers to the ability of objects to respond
differently to the same method

– closely related to inheritance

– depending on the functionality desired, the OO environment
might consider a particular Master object as a Master, a
Graduate, a Student, or a Person

• Static binding binds a method to its implementation at
compile time

• Dynamic binding binds a method to its appropriate
implementation at runtime, based on the object and its
class.

15

Advanced Concepts of OO

public class PersonProgram {

public static void main(String[] args){

Student john = new Master("John Adams");

john.setGrades(0.75,0.82,0.91,0.69,0.79);

Student anne = new Associate("Anne Philips");

anne.setGrades(0.75,0.82,0.91,0.69,0.79);

System.out.println(john.getName() + ": " +
john.calculateGPA());

System.out.println(anne.getName() + ": " +
anne.calculateGPA());

}

}

16

OUTPUT:
John Adams: 0.865
Anne Philips: 0.792

Basic Principles of Object Persistence

• Transient object is only needed during program execution
and can be discarded when the program terminates

• Persistent object is an object that should survive program
execution

• Persistence strategies:

– Persistence by class

– Persistence by creation

– Persistence by marking

– Persistence by inheritance

– Persistence by reachability

17

Basic Principles of Object Persistence

• Persistence by class implies that all objects of a
particular class will be made persistent

• Persistence by creation is achieved by extending
the syntax for creating objects to indicate at
compile-time that an object should be made
persistent

• Persistence by marking implies that all objects will
be created as transient. An object can then be marked
as persistent during program execution

18

Basic Principles of Object Persistence

• Persistence by inheritance indicates that the
persistence capabilities are inherited from a pre-
defined persistent class

• Persistence by reachability starts by declaring the
root persistent object(s). All objects that are
referred to (either directly or indirectly) by the
root object(s) will then be made persistent as well.

19

Basic Principles of Object Persistence

• Persistence orthogonality

– persistence independence: persistence of an object is
independent of how a program manipulates it

– type orthogonality: all objects can be made persistent,
irrespective of their type or size

– transitive persistence: refers to persistence by
reachability

20

Basic Principles of Object Persistence

• Persistent programming languages extend an OO
language with a set of class libraries for object
persistence

• Serialization translates an object’s state into a
format that can be stored (for example, in a file)
and reconstructed later

21

Basic Principles of Object Persistence
public class EmployeeProgram {

public static void main(String[] args) {

Employee Bart = new Employee();

Employee Seppe = new Employee();

Employee Wilfried = new Employee();

Bart.setName("Bart Baesens");

Seppe.setName("Seppe vanden Broucke");

Wilfried.setName("Wilfried Lemahieu");

try{

FileOutputStream fos = new FileOutputStream("myfile.ser");

ObjectOutputStream out = new ObjectOutputStream(fos);

out.writeObject(Bart);

out.writeObject(Seppe);

out.writeObject(Wilfried);

out.close;

}

catch (IOException e){e.printStackTrace();}

}

}

22

persistence by reachability!

Basic Principles of Object Persistence

• Serialization suffers from the same disadvantages
of the file based approach

• Lost object identity

23

OODBMS

• Object-oriented DBMSs (OODBMSs) store
persistent objects in a transparent way

• OODBMSs originated as extensions o OO
programming languages

• OODBMSs support persistence orthogonality

• OODBMSs guarantee the ACID properties

24

OODBMS

• Every object has a unique and immutable object identifier
(OID)

– Not dependent upon state of object (↔ primary key)

– Unique within entire OO environment (↔ primary key)

– Invisible to the user (↔ primary key)

• OIDs are used to identify objects and to create and manage
references between objects

• OO model is often referred to as an identity-based model

– Relational model: value based model

25

OODBMS

• Two objects are said to be equal when the values
of their variables are the same (object equality)

– Shallow versus deep equality

• Two objects are said to be identical or equivalent
when their OIDs are the same (object identity)

26

OODBMS

• The Object Database Management Group (ODMG)
was formed in 1991 by a group of OO database
vendors

– Changed to Object Management Group (OMG) in 1998

• Promote portability and interoperability for object
persistence by introducing a DDL and DML similar
to SQL

• only one language for dealing with both transient
and persistent objects

27

OODBMS

• OMG introduced 5 standards(most recent ODMG
3.0 in 2000) with following components:

– Object Model: provides a standard object model for
OODBMS

– Object Definition Language (ODL): specifies object
definitions (classes and interfaces)

– Object Query Language (OQL): allows to define SELECT
queries

– Language Bindings (e.g., for C++, Smalltalk and Java):
retrieve and manipulate object data.

28

OODBMS

• Object Model provides a common model to define
classes, variables or attributes, behavior and
object persistence.

• Two basic building blocks are objects and literals

• A literal does not have an OID and cannot exist on
its own (↔ an object)

• Types of literals: atomic, collection, structured

29

OODBMS

• Atomic literals: short (short integer), long (long integer),
double (real number), float (real number), boolean (true or
false), char, and string

• Collection literals:

– Set: unordered collection of elements without duplicates

– Bag: unordered collection of elements which may contain
duplicates

– List: ordered collection of elements

– Array: ordered collection of elements which is indexed

– Dictionary: unordered sequence of key-value pairs without
duplicates

30

OODBMS

• A structured literal consists of a fixed number of
named elements

• E.g., Date, Interval, Time and TimeStamp

struct Address{

string street;

integer number;

integer zipcode;

string city;

string state;

string country;

}; 31

OODBMS

• Object Definition Language (ODL) is a DDL to
define the object types that conform to the ODMG
Object Model

32

OODBMS
class EMPLOYEE

(extent employees

key SSN)

{

attribute string SSN;

attribute string ENAME;

attribute struct ADDRESS;

attribute enum GENDER {male, female};

attribute date DATE_OF_BIRTH;

relationship set<EMPLOYEE> supervises

inverse EMPLOYEE:: supervised_by;

relationship EMPLOYEE supervised_by

inverse EMPLOYEE:: supervises;

relationship DEPARTMENT works_in

inverse DEPARTMENT:: workers;

relationship set<PROJECT> has_projects

inverse PROJECT:: has_employees;

string GET_SSN();

void SET_SSN(in string new_ssn);}

…
33

OODBMS

class MANAGER extends EMPLOYEE

(extent managers)

{

attribute date mgrdate;

relationship DEPARTMENT manages

inverse DEPARTMENT:: managed_by

}

34

class DEPARTMENT

(extent departments

key DNR)

{

attribute string DNR;

attribute string DNAME;

attribute set<string> DLOCATION;

relationship set<EMPLOYEE> workers

inverse EMPLOYEE:: works_in;

relationship set<PROJECT>
assigned_to_projects

inverse PROJECT:: assigned_to_department

relationship MANAGER managed_by

inverse MANAGER:: manages;

string GET_DNR();

void SET_DNR(in string new_dnr);

…}

OODBMS

class PROJECT

(extent projects

key PNR)

{

attribute string PNR;

attribute string PNAME;

attribute string PDURATION;

relationship DEPARTMENT assigned_to_department

inverse DEPARTMENT:: assigned_to_projects;

relationship SET<EMPLOYEE> has_employees

inverse EMPLOYEE:: has_projects;

string GET_PNR();

void SET_PNR(in string new_pnr);

35

OODBMS

• A class is defined using the keyword class

• The extent of a class is the set of all current objects of the
class

• A variable is declared using the keyword attribute

• Operations or methods can be defined by their name
followed by parentheses

– keywords in, out, and inout are used to define the input, output
and input/output parameters

• extends keyword indicates the inheritance relationship

36

OODBMS

• Relationships can be defined using the keyword
relationship.

• Only unary and binary relationships with cardinalities of
1:1, 1:N, or N:M are supported in ODMG.

• Ternary (or higher) relationships and relationship
attributes need to be decomposed by introducing extra
classes and relationships.

37

OODBMS

• Every relationship is defined in a bidirectional way,
using the keyword inverse

relationship DEPARTMENT works_in

inverse DEPARTMENT:: workers;

relationship set<EMPLOYEE> workers

inverse EMPLOYEE:: works_in;

38

OODBMS

• N:M relationship can be implemented by defining
collection types (e.g. set, bag)

relationship set<PROJECT> has_projects

inverse PROJECT:: has_employees;

relationship SET<EMPLOYEE> has_employees

inverse EMPLOYEE:: has_projects;

39

OODBMS

• Object Query Language (OQL) is a declarative,
non-procedural query language

• OQL can be used for both navigational
(procedural) as well as associative (declarative)
access

40

OODBMS

• A navigational query explicitly navigates from one
object to another

Bart.DATE_OF_BIRTH

Bart.ADDRESS

Bart.ADDRESS.CITY

41

OODBMS

• An associative query returns a collection (e.g., a
set or bag) of objects which are located by the
OODBMS.

Employees

42

OODBMS

• SELECT… FROM … WHERE OQL queries

• OQL query returns a bag

SELECT e.SSN, e.ENAME, e.ADDRESS, e.GENDER
FROM employees e
WHERE e.name=“Bart Baesens”

43

OODBMS

SELECT e.SSN, e.ENAME, e.ADDRESS,
e.GENDER, e.age
FROM employees e
WHERE e.name=“Bart Baesens”

SELECT e
FROM employees e
WHERE e.age > 40

44

OODBMS

• OQL join queries

SELECT e.SSN, e.ENAME, e.ADDRESS, e.GENDER, e.age
FROM employees e, e.works_in d
WHERE d.DNAME=”ICT”

SELECT e1.ENAME, e1.age, d.DNAME, e2.ENAME,
e2.age
FROM employees e1, e1.works_in d, d.managed_by e2
WHERE e1.age > e2.age

45

OODBMS

count(employees)

SELECT e.SSN, e.ENAME
FROM employees e
WHERE EXISTS e IN (SELECT x FROM
projects p WHERE p.has_employees x)

SELECT e.SSN, e.ENAME, e.salary
FROM employees e

46

OODBMS

• ODMG language bindings provide implementations for
the ODL and OQL specifications in popular OO
programming languages (e.g. C++, Smalltalk or Java)

• Object Manipulation Language (OML) is kept language-
specific

• E.g., for the Java language binding, this entails that Java’s
type system will also be used by the OODBMS, that the
Java language syntax is respected and that the OODBMS
should handle management aspects based on Java’s
object semantics

47

Evaluating OODBMSs

• Complex objects and relationships are stored in a
transparent way (no impedance mismatch!)

• Success of OODBMSs has been limited to niche
applications

– E.g., processing of scientific data sets by CERN

• Disadvantages

– the (ad-hoc) query formulation and optimization procedures

– robustness, security, scalability and fault-tolerance

– no transparent implementation of the 3 layer database
architecture (e.g. views)

48

Evaluating OODBMSs

• Most mainstream database applications will, however,
typically be built using an OO programming language in
combination with an RDBMS

• Object Relational Mapping (ORM) framework is used as
middleware to facilitate the communication between
both environments: OO host language and RDBMS

49

Conclusions

• Recap: Basic Concepts of OO

• Advanced Concepts of OO

• Basic Principles of Object Persistence

• OODBMS

• Evaluating OODBMSs

50

More information?

www.pdbmbook.com 51

http://www.pdbmbook.com/

