Object Oriented Databases and Object Persistence

.l

n‘

JUMP INTO 14HE E%O}VINGQIURL

OFDATA SE MANAGEME |

Prmcq bles of Database| Manag ' with the : datab
management information to understand and apply the fundamental co pts of
databdse design'and modeling, database systems; data storage, and thelevolving world
of data warehoising, governance and more. Designed for those studying datal
management for information management or computer science, this illustrates
textbook has a well-balanced theory—practice focus and covers the essential tapics,
from technologies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, dnll down boxes that reveal deeper insights on key,
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the ionship b concepts ighout the text are included to
provide the practical tools to get started in database management.

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDETO STORING. MANAGING
AND ANALYZING BIG AND SMALL DATQ‘

SN3S3v8 ONY
v MAHYIAT

I4IN0YE NIANYA

;

=
¥

L
-
=
rm
w
o
By

N SN B WS

KEY FEATURES INCLUDE:
* Full-color illustrations throughout the text.

= Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.

* An online playground with diverse envi including MySQL for querying;
MongoDB; Neodj Cypher; and a tree structure visualization environment.

* Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.

* Case studies, review questions, problems and exercises in every chapter.

* Additional cases, probl and it in the di

INIW3IVNVIN 3SVE

Online Resources
www.cambridge.org/

Instructor’s resources
M Solutions manual
S Code and data for examples

ISBN 978
Cover illustration: @Chen Hanquan / DigitalVision / Getty lmages.
Cover design: Andrew Ward.

9"781107"186125">

www.pdbmbook.co



http://www.pdbmbook.com/

Introduction

Recap: Basic Concepts of OO
Advanced Concepts of OO

Basic Principles of Object Persistence
OODBMS

Evaluating OODBMSs




Recap: Basic Concepts of OO

e Object is an instance of a class

* Class contains a blueprint description of all the
object’s characteristics

* Object bundles both variables (which determine
its state) and methods (which determine its
behavior) in a coherent way




Recap: Basic Concepts of OO

public class Employee {

private int EmployeelD;
private String Name;

private String Gender;
private Department Dep;

public int getEmployeeID() {
return EmployeelD;

}
public void setEmployeeID(

int id ) {
this.EmployeeID = id;

}

public String getName() {
return Name;}

public void setName( String
name ) {

this.Name = name;

}

public String getGender() {
return Gender;

}

public void setGender( String
gender ) {

this.Gender = gender;

}

public Department getDep() {
return Dep;

}

public void setDep(Department
dep) {this.Dep = dep;}}




Recap: Basic Concepts of OO

* Getter and setter methods implement the concept
of information hiding (aka encapsulation)

* Encapsulation enforces a strict separation
between interface and implementation.
— interface consists of the signatures of the methods.

— implementation is based upon the object’s variables
and method definitions




Recap: Basic Concepts of OO

public class EmployeeProgram {

public static void main(String[] args) {
Employee Bart = new Employee();
Employee Seppe = new Employee();
Employee Wilfried = new Employee();
Bart.setName("Bart Baesens");
Seppe.setName("Seppe vanden Broucke");
Wilfried.setName("Wilfried Lemahieu");




Advanced Concepts of OO

Method overloading
Inheritance

Method overriding
Polymorphism
Dynamic binding




Advanced Concepts of OO

* Method overloading refers to using the same
name for more than one method in the same
class.

* OO0 language environment can then determine
which method you are calling, provided the
number or type of parameters is different in each
method




Advanced Concepts of OO

public class Book {

String title; public void read(int 1i){
String author; isRead = true;
boolean isRead; numberOfReadings +=
int numberOfReadings; i;

}
public void read(){ }

isRead = true;
numberOfReadings++;

read(1) same effect as read()




Advanced Concepts of OO

* Method overloading is a handy feature when defining
constructors for a class

* A constructor is a method which returns an object of
a class

 Examples:

— Student(String name, int year, int month,
int day)

— Student(String name)




Advanced Concepts of OO

* |Inheritance represents an “is a” relationship
— E.g. Student and Employee inherit from Person
— Superclass versus Subclass

Master
- Graduate -|:
Doctorate

—~  Student —

Associate

Undergraduate

Object Person -

4 Bachelor

Staff
- Employee -|:
Faculty




Advanced Concepts of OO

public class Person {
private String name;

public Person(String name){
this.setName(name);

}

public String getName(){

return this.name;

}

public void setName(String name){
this.name = name;

}
}

public class Employee extends Person {
private Employee manager;
private int id;

public Employee(String name, Employee manager,
int empID) {

super(name);

this.setManager(manager);
this.setEmployeeID(empID);

}

public Employee getManager() {

return manager;

}

public void setManager(Employee manager) {
this.manager = manager;

}

public int getEmployeeID() {

return id;

}

private void setEmployeeID(int employeeID) {
this.id = employeelD;}}




Advanced Concepts of OO

* Method overriding: subclasses can override an
inherited method with a new, specialized
implementation




Advanced Concepts of OO

Student Class Graduate Class

public double calculateGPA() { public double calculateGPA(){

double sum = ©; double sum = ©;

int count = ©; int count = 0;

for (double grade : this.getGrades()){ for (double grade : this.getGrades()){
sum += grade; if (grade > 80){

count++; sum += grade;

} count++;

return sum/count; }

} }

return sum/count;

}




Advanced Concepts of OO

* Polymorphism refers to the ability of objects to respond
differently to the same method

— closely related to inheritance

— depending on the functionality desired, the OO environment
might consider a particular Master object as a Master, a
Graduate, a Student, or a Person

e Static binding binds a method to its implementation at
compile time

 Dynamic binding binds a method to its appropriate
implementation at runtime, based on the object and its
class.




Advanced Concepts of OO

public class PersonProgram {

public static void main(String[] args){
Student john = new Master("John Adams");
john.setGrades(0.75,0.82,0.91,0.69,0.79);
Student anne = new Associate("Anne Philips");
anne.setGrades(0.75,0.82,0.91,0.69,0.79);

System.out.println(john.getName() + ": " +
john.calculateGPA());

System.out.println(anne.getName() + ": " +
anne.calculateGPA());

! OUTPUT:

} John Adams: 0.865

Anne Philips: 0.792

16




Basic Principles of Object Persistence

Transient object is only needed during program execution
and can be discarded when the program terminates

Persistent object is an object that should survive program
execution

Persistence strategies:

— Persistence by class

— Persistence by creation

— Persistence by marking

— Persistence by inheritance
— Persistence by reachability




Basic Principles of Object Persistence

* Persistence by class implies that all objects of a
particular class will be made persistent

* Persistence by creation is achieved by extending
the syntax for creating objects to indicate at
compile-time that an object should be made
persistent

* Persistence by marking implies that all objects will

be created as transient. An object can then be marked
as persistent during program execution




Basic Principles of Object Persistence

* Persistence by inheritance indicates that the
persistence capabilities are inherited from a pre-
defined persistent class

* Persistence by reachability starts by declaring the
root persistent object(s). All objects that are
referred to (either directly or indirectly) by the
root object(s) will then be made persistent as well.




Basic Principles of Object Persistence

* Persistence orthogonality

— persistence independence: persistence of an object is
independent of how a program manipulates it

— type orthogonality: all objects can be made persistent,
irrespective of their type or size

— transitive persistence: refers to persistence by
reachability




Basic Principles of Object Persistence

e Persistent programming languages extend an OO
language with a set of class libraries for object

persistence

e Serialization translates an object’s state into a
format that can be stored (for example, in a file)
and reconstructed later




Basic Principles of Object Persistence

public class EmployeeProgram {

public static void main(String[] args) {
Employee Bart = new Employee();
Employee Seppe = new Employee();
Employee Wilfried = new Employee();
Bart.setName("Bart Baesens");
Seppe.setName("Seppe vanden Broucke");
Wilfried.setName("Wilfried Lemahieu");
try{
FileOutputStream fos = new FileOutputStream("myfile.ser");
ObjectOutputStream out = new ObjectOutputStream(fos);
out.writeObject(Bart);
out.writeObject(Seppe);
out.writeObject(Wilfried);
out.close;

}
catch (IOException e){e.printStackTrace();}

} : -
} persistence by reachability!




Basic Principles of Object Persistence

* Serialization suffers from the same disadvantages
of the file based approach

* Lost object identity

Lecturer
Bart

Lecturer Course

Wilfried Basic Programming
Lecturer ,///////////
Seppe

Course
Database Management




OODBMS

Object-oriented DBMSs (OODBMSs) store
persistent objects in a transparent way

OODBMSs originated as extensions o OO
programming languages

OODBMSs support persistence orthogonality
OODBMSs guarantee the ACID properties




OODBMS

Every object has a unique and immutable object identifier
(OID)

— Not dependent upon state of object (¢> primary key)

— Unique within entire OO environment (¢ primary key)

— Invisible to the user (¢ primary key)

OIDs are used to identify objects and to create and manage
references between objects

OO model is often referred to as an identity-based model
— Relational model: value based model




OODBMS

 Two objects are said to be equal when the values
of their variables are the same (object equality)

— Shallow versus deep equality

* Two objects are said to be identical or equivalent
when their OIDs are the same (object identity)




OODBMS

 The Object Database Management Group (ODMG)
was formed in 1991 by a group of OO database
vendors

— Changed to Object Management Group (OMG) in 1998
* Promote portability and interoperability for object

persistence by introducing a DDL and DML similar
to SQL

* only one language for dealing with both transient
and persistent objects




OODBMS

* OMG introduced 5 standards( most recent ODMG
3.0in 2000 ) with following components:

— Object Model: provides a standard object model for
OODBMS

— Object Definition Language (ODL): specifies object
definitions (classes and interfaces)

— Object Query Language (0QL): allows to define SELECT
qgueries

— Language Bindings (e.g., for C++, Smalltalk and Java):
retrieve and manipulate object data.




OODBMS

Object Model provides a common model to define
classes, variables or attributes, behavior and
object persistence.

Two basic building blocks are objects and literals

A literal does not have an OID and cannot exist on
its own (€= an object)

Types of literals: atomic, collection, structured




OODBMS

* Atomic literals: short (short integer), long (long integer),
double (real number), float (real number), boolean (true or
false), char, and string

e Collection literals:

— Set: unordered collection of elements without duplicates

— Bag: unordered collection of elements which may contain
duplicates

— List: ordered collection of elements
— Array: ordered collection of elements which is indexed

— Dictionary: unordered sequence of key-value pairs without
duplicates




OODBMS

e A structured literal consists of a fixed number of
named elements

* E.g., Date, Interval, Time and TimeStamp

struct Address{
string street;
integer number;
integer zipcode;
string city;
string state;
string country;

}s




OODBMS

* Object Definition Language (ODL) is a DDL to
define the object types that conform to the ODMG
Object Model




OODBMS

class EMPLOYEE

(extent employees

key SSN)

{
attribute string SSN;
attribute string ENAME;
attribute struct ADDRESS;
attribute enum GENDER {male, female};
attribute date DATE OF BIRTH;
relationship set<EMPLOYEE> supervises
inverse EMPLOYEE:: supervised by;
relationship EMPLOYEE supervised by
inverse EMPLOYEE:: supervises;
relationship DEPARTMENT works_in
inverse DEPARTMENT:: workers;
relationship set<PROJECT> has_projects
inverse PROJECT:: has_employees;
string GET_SSN();
void SET_SSN(in string new _ssn);}




OODBMS

class MANAGER extends EMPLOYEE
(extent managers)

{

attribute date mgrdate;
relationship DEPARTMENT manages
inverse DEPARTMENT:: managed by

}

class DEPARTMENT
(extent departments
key DNR)
{
attribute string DNR;
attribute string DNAME;
attribute set<string> DLOCATION;
relationship set<EMPLOYEE> workers
inverse EMPLOYEE:: works_ in;

relationship set<PROJECT>
assigned to projects

inverse PROJECT:: assigned_to_department
relationship MANAGER managed by

inverse MANAGER:: manages;

string GET_DNR();

void SET DNR(in string new _dnr);

e}




OODBMS

class PROJECT

(extent projects

key PNR)

{

attribute string PNR;

attribute string PNAME;

attribute string PDURATION;

relationship DEPARTMENT assigned to department
inverse DEPARTMENT:: assigned to projects;
relationship SET<EMPLOYEE> has_employees
inverse EMPLOYEE:: has_projects;

string GET _PNR();

void SET PNR(in string new _pnr);




OODBMS

A class is defined using the keyword class

The extent of a class is the set of all current objects of the
class

A variable is declared using the keyword attribute

Operations or methods can be defined by their name
followed by parentheses

— keywords in, out, and inout are used to define the input, output
and input/output parameters

extends keyword indicates the inheritance relationship




OODBMS

e Relationships can be defined using the keyword
relationship.

* Only unary and binary relationships with cardinalities of
1:1, 1:N, or N:M are supported in ODMG.

e Ternary (or higher) relationships and relationship
attributes need to be decomposed by introducing extra
classes and relationships.




OODBMS

* Every relationship is defined in a bidirectional way,
using the keyword inverse

relationship DEPARTMENT works in
inverse DEPARTMENT:: workers;

relationship set<EMPLOYEE> workers
inverse EMPLOYEE:: works in;




OODBMS

* N:M relationship can be implemented by defining
collection types (e.g. set, bag)

relationship set<PROJECT> has projects
inverse PROJECT:: has_employees;

relationship SET<EMPLOYEE> has_employees
inverse EMPLOYEE:: has_projects;




OODBMS

* Object Query Language (OQL) is a declarative,
non-procedural query language

* OQL can be used for both navigational

(procedural) as well as associative (declarative)
access




OODBMS

* A navigational query explicitly navigates from one
object to another

Bart.DATE_OF BIRTH
Bart.ADDRESS
Bart.ADDRESS.CITY




OODBMS

* An associative query returns a collection (e.g., a
set or bag) of objects which are located by the
OODBMS.

Employees




OODBMS

 SELECT... FROM ... WHERE OQL queries
 OQL query returns a bag

SELECT e.SSN, e.ENAME, e.ADDRESS, e.GENDER
FROM employees e

WHERE e.name=‘“Bart Baesens”




OODBMS

SELECT e.SSN, e.ENAME, e.ADDRESS,
e.GENDER, e.age

FROM employees e

WHERE e.name=“Bart Baesens”

SELECT e
FROM employees e
WHERE e.age > 40




OODBMS

 OQL join queries

SELECT e.SSN, e.ENAME, e.ADDRESS, e.GENDER, e.age
FROM employees e, e.works in d
WHERE d.DNAME="ICT”

SELECT el.ENAME, el.age, d.DNAME, e2.ENAME,
e2.age

FROM employees el, el.works in d, d.managed by e2
WHERE el.age > e2.age




OODBMS

count(employees)

SELECT e.SSN, e.ENAME

FROM employees e

WHERE EXISTS e IN (SELECT x FROM
projects p WHERE p.has employees Xx)

SELECT e.SSN, e.ENAME, e.salary
FROM employees e




OODBMS

* ODMG language bindings provide implementations for
the ODL and OQL specifications in popular OO
programming languages (e.g. C++, Smalltalk or Java)

* Object Manipulation Language (OML) is kept language-
specific

 E.g., for the Java language binding, this entails that Java’s
type system will also be used by the OODBMS, that the
Java language syntax is respected and that the OODBMS
should handle management aspects based on Java’s
object semantics




Evaluating OODBMSs

Complex objects and relationships are stored in a
transparent way (no impedance mismatch!)

Success of OODBMSs has been limited to niche
applications
— E.g., processing of scientific data sets by CERN

Disadvantages
— the (ad-hoc) query formulation and optimization procedures
— robustness, security, scalability and fault-tolerance

— no transparent implementation of the 3 layer database
architecture (e.g. views)




Evaluating OODBMSs

* Most mainstream database applications will, however,
typically be built using an OO programming language in
combination with an RDBMS

* Object Relational Mapping (ORM) framework is used as

middleware to facilitate the communication between
both environments: OO host language and RDBMS




Conclusions

Recap: Basic Concepts of OO
Advanced Concepts of OO

Basic Principles of Object Persistence
OODBMS

Evaluating OODBMSs




More information?

- W
(! Ll { E

JUMP INTU 14HE E% _ VING‘IURL

e S .
N SN

OFDATABASE MA GEME»

Princigles of Database,
manqement information to

bdse design"and modeling, database systems; data storage, and the'evolving world
of data warehoising, governance and more. Designed for those studying datal
management for information management or computer science, this illustrates
textbook has a we" ba[anced theory practice focus and covers the essential tapics,
from blished ies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, drill-down boxes that reveal deeper insights on key
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the relationship b hroughout the text are included to
provide the practical tools to get started in database management.

with the

KEY FEATURES INCLUDE:
* Full-color illustrations throughout the text.

* Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.

An online playground with diverse environments, including MySQL for querying;
MongoDB; Neodj Cypher; and a tree structure visualization environment.

Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.

Case studies, review questions, problems and exercises in every chapter.

Additional cases, p: and it in the di

Online Resources
www.cambridge.org/

Instructor’s resources

M Solutions manual
M Code and data for examples

Cover illustration: @Chen Hanquan / DigitalVision / Getty lmages.
Cover design: Andrew Ward.

9"781107"186125

il )
1d and apply the fund: | col -

>

SN3S3 V8 ONY
T3IHYIWAT

I1IN0YE NIONYA

|

bl

<2
O
—
m
w
o)
M

INIWIIVNVIN 3SVE

.

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDE TO STORING. MANAGING
AND ANALYZING BIG AND SMALL DAT&

www.pdbmbook.co



http://www.pdbmbook.com/

